Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Mater ; 23(2): 262-270, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38123813

RESUMO

Porous metal-organic frameworks have emerged to resolve important challenges of our modern society, such as CO2 sequestration. Zeolitic imidazolate frameworks (ZIFs) can undergo a glass transition to form ZIF glasses; they combine the liquid handling of classical glasses with the tremendous potential for gas separation applications of ZIFs. Using millimetre-sized ZIF-62 single crystals and centimetre-sized ZIF-62 glass, we demonstrate the scalability and processability of our materials. Further, following the evolution of gas penetration into ZIF crystals and ZIF glasses by infrared microimaging techniques, we determine the diffusion coefficients and changes to the pore architecture on the ångström scale. The evolution of the material on melting and processing is observed in situ on different length scales by using a microscope-coupled heating stage and analysed microstructurally by transmission electron microscopy. Pore collapse during glass processing is further tracked by changes in the volume and density of the glasses. Mass spectrometry was utilized to investigate the crystal-to-glass transition and thermal-processing ability. The controllable tuning of the pore diameter in ZIF glass may enable liquid-processable ZIF glass membranes for challenging gas separations.

2.
Nanomaterials (Basel) ; 13(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36770562

RESUMO

The rate of sorption of n-butane on the structurally flexible metal-organic framework [Cu2(H-Me-trz-ia)2], including its complete structural transition between a narrow-pore phase and a large-pore phase, was studied by sorption gravimetry, IR spectroscopy, and powder X-ray diffraction at close to ambient temperature (283, 298, and 313 K). The uptake curves reveal complex interactions of adsorption on the outer surface of MOF particles, structural transition, of which the overall rate depends on several factors, including pressure step, temperature, as well as particle size, and the subsequent diffusion into newly opened pores. With the aid of a kinetic model based on the linear driving force (LDF) approach, both rates of diffusion and structural transition were studied independently of each other. It is shown that temperature and applied pressure steps have a strong effect on the rate of structural transition and thus, the overall velocity of gas uptake. For pressure steps close to the upper boundary of the gate-opening, the rate of structural transition is drastically reduced. This feature enables a fine-tuning of the overall velocity of sorption, which can even turn into anti-Arrhenius behavior.

3.
ACS Appl Mater Interfaces ; 11(15): 14175-14181, 2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30900448

RESUMO

Increasing demands in the field of sensing, especially for gas detection applications, require new approaches to chemical sensors. Metal-organic frameworks (MOFs) can play a decisive role owing to their outstanding performances regarding gas selectivity and sensitivity. The tetrathiafulvalene (TTF)-infiltrated MOF, Co-MOF-74, has been prepared following the host-guest concept and evaluated in resistive gas sensing. The Co-MOF-74-TTF crystal morphology has been characterized via X-ray diffraction and scanning electron microscopy, while the successful incorporation of TTF into the MOF has been validated via X-ray photoemission spectroscopy, thermogravimetric analysis, UV/vis, infrared (IR), and Raman investigations. We demonstrate a reduced yet ample uptake of CO2 in the pores of the new material by IR imaging and adsorption isotherms. The nanocomposite Co-MOF-74-TTF exhibits an increased electrical conductivity in comparison to Co-MOF-74 which can be influenced by gas adsorption from a surrounding atmosphere. This effect could be used for gas sensing.

4.
Magn Reson Imaging ; 56: 3-13, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30322668

RESUMO

Application of pulsed field gradient (PFG) NMR to studying molecular diffusion in beds of nanoporous materials has given rise to novel insights and paradigm shifts in our understanding, which are reviewed in the present contribution. This gain in information is, in particular, related to the ability of PFG NMR to discriminate between various mechanisms affecting mass transfer in such systems. Examples include, inter alia, the sensitivity of PFG NMR toward transport enhancement in pore hierarchies as well as toward transport resistances acting, in addition to the diffusional resistance of the genuine pore space, either on the crystal surfaces or in their interior.


Assuntos
Difusão , Processamento de Imagem Assistida por Computador/métodos , Espectroscopia de Ressonância Magnética/métodos , Nanoporos , Porosidade
5.
Molecules ; 23(3)2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29543777

RESUMO

Molecular diffusion is commonly found to slow down with increasing molecular size. Deviations from this pattern occur in some host materials with pore sizes approaching the diameters of the guest molecules. A variety of theoretical models have been suggested to explain deviations from this pattern, but robust experimental data are scarcely available. Here, we present such data, obtained by monitoring the chain length dependence of the uptake of n-alkanes in the zeolitic imidazolate framework ZIF-4. A monotonic decrease in diffusivity from ethane to n-butane was observed, followed by an increase for n-pentane, and another decrease for n-hexane. This observation was confirmed by uptake measurements with n-butane/n-pentane mixtures, which yield faster uptake of n-pentane. Further evidence is provided by the observation of overshooting effects, i.e., by transient n-pentane concentrations exceeding the (eventually attained) equilibrium value. Accompanying grand canonical Monte Carlo simulations reveal, for the larger n-alkanes, significant differences between the adsorbed and gas phase molecular configurations, indicating strong confinement effects within ZIF-4, which, with increasing chain length, may be expected to give rise to configurational shifts facilitating molecular propagation at particular chain lengths.


Assuntos
Alcanos/química , Estruturas Metalorgânicas/química , Zeolitas/química , Estrutura Molecular , Método de Monte Carlo
6.
Angew Chem Int Ed Engl ; 57(18): 5156-5160, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29465815

RESUMO

Through IR microimaging the spatially and temporally resolved development of the CO2 concentration in a ZIF-8@6FDA-DAM mixed matrix membrane (MMM) was visualized during transient adsorption. By recording the evolution of the CO2 concentration, it is observed that the CO2 molecules propagate from the ZIF-8 filler, which acts as a transport "highway", towards the surrounding polymer. A high-CO2 -concentration layer is formed at the MOF/polymer interface, which becomes more pronounced at higher CO2 gas pressures. A microscopic explanation of the origins of this phenomenon is suggested by means of molecular modeling. By applying a computational methodology combining quantum and force-field based calculations, the formation of microvoids at the MOF/polymer interface is predicted. Grand canonical Monte Carlo simulations further demonstrate that CO2 tends to preferentially reside in these microvoids, which is expected to facilitate CO2 accumulation at the interface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...